华能 冲击电流发生器 HNCJ-10 雷电冲击电压发生装置 制造厂家
华能 冲击电流发生器 HNCJ-10 雷电冲击电压发生装置 制造厂家 所以说,大工件应该是精度和体量的统一体。如果一定要从尺寸上来区分的话,也许以2m体量起,有机加工精度要求的机械零件就可以认为是大工件。比较典型的如大型注塑机壳体(2000×2000mm×800mm)、小的风电轮毂(球径3000mm左右)等,而且其孔系的位置度要求非常高(0.03mm左右),能应对其长宽高体量特征和测量精度的常规固定式坐标测量机已不多。以此类推,那么白车身这一类工件的测量则不被认为是大工件,因为已经有成系列的坐标测量机,同时由于是钣金成形及拼接件,其总体精度与机加工件相比还有一定的差距。
HNCJ系列雷电冲击电压发生装置
冲击电压发生器一种模仿雷电及操作过电压等冲击电压的电源装置。主要用于绝缘冲击耐压及介质冲击击穿、放电等试验中。
HNCJ-V 雷电冲击电压发生装置
产品参数
标准电压(kV) |
冲击电容量(μF) |
级电容量(μF) |
冲击能量(kJ) |
级电压(kV) |
级数 |
重量(kg) |
±300—±900 |
0.133—0.111 |
0.4—1 |
6—45 |
±100 |
3—9 |
547—1378 |
±1000—±1600 |
0.05—0.0937 |
0.5—1.5 |
25—120 |
10—16 |
1366—1880 |
|
±1800—±2400 |
0.056—0.0833 |
0.5—1 |
90—240 |
±200 |
9—12 |
7353—11574 |
±2800—±3200 |
0.0357—0.0625 |
140—320 |
14—16 |
10266—15680 |
||
±3600—±4800 |
0.0278—0.03125 |
0.5—2 |
80—240 |
18—24 |
15480—23500 |
结构描述及介绍
1、 充电部分
(1)采用恒流充电方式,额定输出电压±100kV 额定输出直流电流10-300mA;
(2)采用干式充电变压器,初级电压220V,次级电压50kV,额定容量5千伏安。
(3)采用2DL-200kV/200mA的高压整流硅堆,反向耐压100kV,平均电流0.2A,高压整流硅堆安装在充电板上;
(4)高压整流硅堆的保护电阻采用漆包电阻丝制作;
(5) 恒流充电装置在15%~额定充电电压范围内,实际充电电压与整定电压偏差不大于±1%,充电电压的不稳定性不大于±1%,充电电压的可调精度为1%;
(6) 直流电阻分压器采用100kV,200MΩ,高压玻璃釉电阻.低压臂电阻装在分压器底部,低压臂上的电压信号用电缆引入测量系统内;
(7) 自动接地开关采用电磁铁分合接地机构,试验停止时可自动将主电容器短路放电并经保护电阻接地;
(8) 恒流充电装置、充电变压器、高压硅整流器、倍压电容、电阻分压器、充电限流电阻和主控制器等安装在同一个移动式底盘上;
2.本体部分
(1) 主体结构形式采用德国HIGHVOLT G型立柱结构;
(2) 本体采用倍压充电回路,每级额定电压100kV;
(3) 本体绝缘支柱5级结构.每级包括1台MWF-1.2/100绝缘外壳干式脉冲电容器、充电电阻、波头电阻、波尾电阻和点火球隙等,当产生雷电波时,根据试品电容量大小,选择适当的雷电波波头电阻、波尾电阻和级数;
(4) 级脉冲电容为1.2uF,直流工作电压100kV;
(5) 波头电阻、波尾电阻均采用板形结构,无感绕制。电阻采用HIGHVOLT的结构,保证电阻的热容量能满足试验要求;剩余电感小;
(6) 接头均为弹簧压接式,方便调波时的插拔且接触可靠。
(7) 波头、波尾电阻支架可以由多支电阻同时并联使用;
(8) 级球隙采用双边异极性触发,第二.三四级球隙采用三间隙椭圆球隙点火,从而保证触发的可靠性;
(9)各级球隙距离由低速永磁电动机驱动作直线调整,装置噪音小,无惯性,准确、快速,控制显示对应球距的放电电压;
(10)球隙距离也可在控制部分自动跟踪或人为干预;
(11)本体可每二级或多级并联使用,并联连接杆采用统一接插件,方便换接;
(12) 本体支柱采用玻璃钢材料制造,采取抗老化和防电晕的措施;
(13) 各级均采取防晕措施,在充电过程中不会出现明显电
在机电一体化系统中,传感器处系统之,其作用相当于系统感受,能快速、地获取信息并能经受严酷环境考验,是机电一体化系统达到高水平的保证。如缺少这些传感器对系统状态和对信息而可靠的自动检测,系统的信息处理、控制决策等功能就无法谈及和实现。传感器的研究现状与发展传感器是能感受规定的被测量并按一定规律转换成可用输出信号的器件或装置,主要用于检测机电一体化系统自身与操作对象、作业环境状态,为有效控制机电一体化系统的运作提供必须的相关信息。