500KV 雷电冲击电压发生器 雷电冲击电压发生器 电压冲击发生器
500KV 雷电冲击电压发生器 雷电冲击电压发生器 电压冲击发生器 目前市场上电机测试系统的电机负载种类繁多,电涡流制动器负载、磁粉制动器负载、磁滞制动器负载、伺服电机负载等。考虑到被测电机的特性及成本,选择一款合适的负载至关重要,那么如何才能选择一款合适的电测试平台的负载呢?我们来了解各类型的负载制动器的特性及工作原理:电涡流制动器电涡流制动器是目前国内先进的模拟加载设备,主要用来模拟动力装置的输出性能,由感应盘、电枢和励磁部分等组成。当与转子同轴装配的励磁线圈通直流电时,其产生的磁通经电枢体、涡流环、气隙和转子形成闭合回路。
HNCJ系列雷电冲击电压发生装置
冲击电压发生器一种模仿雷电及操作过电压等冲击电压的电源装置。主要用于绝缘冲击耐压及介质冲击击穿、放电等试验中。
HNCJ-V 雷电冲击电压发生装置
产品参数
标准电压(kV) |
冲击电容量(μF) |
级电容量(μF) |
冲击能量(kJ) |
级电压(kV) |
级数 |
重量(kg) |
±300—±900 |
0.133—0.111 |
0.4—1 |
6—45 |
±100 |
3—9 |
547—1378 |
±1000—±1600 |
0.05—0.0937 |
0.5—1.5 |
25—120 |
10—16 |
1366—1880 |
|
±1800—±2400 |
0.056—0.0833 |
0.5—1 |
90—240 |
±200 |
9—12 |
7353—11574 |
±2800—±3200 |
0.0357—0.0625 |
140—320 |
14—16 |
10266—15680 |
||
±3600—±4800 |
0.0278—0.03125 |
0.5—2 |
80—240 |
18—24 |
15480—23500 |
结构描述及介绍
1、 充电部分
(1)采用恒流充电方式,额定输出电压±100kV 额定输出直流电流10-300mA;
(2)采用干式充电变压器,初级电压220V,次级电压50kV,额定容量5千伏安。
(3)采用2DL-200kV/200mA的高压整流硅堆,反向耐压100kV,平均电流0.2A,高压整流硅堆安装在充电板上;
(4)高压整流硅堆的保护电阻采用漆包电阻丝制作;
(5) 恒流充电装置在15%~额定充电电压范围内,实际充电电压与整定电压偏差不大于±1%,充电电压的不稳定性不大于±1%,充电电压的可调精度为1%;
(6) 直流电阻分压器采用100kV,200MΩ,高压玻璃釉电阻.低压臂电阻装在分压器底部,低压臂上的电压信号用电缆引入测量系统内;
(7) 自动接地开关采用电磁铁分合接地机构,试验停止时可自动将主电容器短路放电并经保护电阻接地;
(8) 恒流充电装置、充电变压器、高压硅整流器、倍压电容、电阻分压器、充电限流电阻和主控制器等安装在同一个移动式底盘上;
2.本体部分
(1) 主体结构形式采用德国HIGHVOLT G型立柱结构;
(2) 本体采用倍压充电回路,每级额定电压100kV;
(3) 本体绝缘支柱5级结构.每级包括1台MWF-1.2/100绝缘外壳干式脉冲电容器、充电电阻、波头电阻、波尾电阻和点火球隙等,当产生雷电波时,根据试品电容量大小,选择适当的雷电波波头电阻、波尾电阻和级数;
(4) 级脉冲电容为1.2uF,直流工作电压100kV;
(5) 波头电阻、波尾电阻均采用板形结构,无感绕制。电阻采用HIGHVOLT的结构,保证电阻的热容量能满足试验要求;剩余电感小;
(6) 接头均为弹簧压接式,方便调波时的插拔且接触可靠。
(7) 波头、波尾电阻支架可以由多支电阻同时并联使用;
(8) 级球隙采用双边异极性触发,第二.三四级球隙采用三间隙椭圆球隙点火,从而保证触发的可靠性;
(9)各级球隙距离由低速永磁电动机驱动作直线调整,装置噪音小,无惯性,准确、快速,控制显示对应球距的放电电压;
(10)球隙距离也可在控制部分自动跟踪或人为干预;
(11)本体可每二级或多级并联使用,并联连接杆采用统一接插件,方便换接;
(12) 本体支柱采用玻璃钢材料制造,采取抗老化和防电晕的措施;
(13) 各级均采取防晕措施,在充电过程中不会出现明显电
气体分析仪内部所配套的一整套气路系统及外部配套设备组成了一套较完整的化工工艺流程,气体分析仪内部对样气的工作条件进行调整控制,以达到传感器正常稳定工作的目的,这是气体分析仪能够获得准确测定数据的保证。完成测定全过程的操作方法不同气体检测报警仪在应用时,只需将仪器放置于被测气氛内,仪器即可显示数值。而气体分析仪必须将样气仔细地引入到仪器内部,再进行工艺技术条件的严格调整,如温度、压力、流量等,只有当操作人员将仪器调整直到实现一个稳定的化工过程后,才能获得准确的测定数据。